If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-3600x-1000000=0
a = 1; b = -3600; c = -1000000;
Δ = b2-4ac
Δ = -36002-4·1·(-1000000)
Δ = 16960000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16960000}=\sqrt{160000*106}=\sqrt{160000}*\sqrt{106}=400\sqrt{106}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3600)-400\sqrt{106}}{2*1}=\frac{3600-400\sqrt{106}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3600)+400\sqrt{106}}{2*1}=\frac{3600+400\sqrt{106}}{2} $
| -0.6(r+0.20=1.8 | | 4x=-10x+14 | | 20x-4=16x+3 | | 8y+3=46 | | -.0005x^2+1.8x-500=0 | | -2-2x=-2-x | | -12x+35=-5x | | 10x-27=x+27 | | 10x-1+13x-3+9+7=180 | | 8x×()×2x=32x | | 7x/2+1=21x | | 1/4x+31/2x=2(1/2x+3/4) | | 10/3x-2=2x | | -5v-3=2(v+2) | | a+5.5=27.3 | | 3=z- | | X-32=2x+23 | | -6(x+1)=-4x+4 | | -6(x+1)=4x+4 | | X^2=6x-512 | | ()-6x=4x | | -6u-40=2(u-8) | | -8(6+5p)=3p-5 | | 5y-1+y+42=8y+50-5y | | 30-2(x)=9 | | 6x-3(3-2)=21.6 | | X-2/3+1/6=5/6t | | 4(w+2)=2w-34 | | .2c=8.33 | | 1.2n=7 | | 4x2+2x+4=0 | | 1.5÷4=x÷12 |